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The meaning of randomness is studied for the simple case of binary sequences. 
Ensemble theory is used, together with correlation coefficients of any order. 
Conservation laws for the total amount of correlation are obtained. They imply 
that true randomness is an ensemble property and can never be achieved in a 
single sequence. The relation with entropy is discussed for different ensembles. 
Well-tempered pseudorandom sequences turn out to be suitable sources of 
random numbers, and practical recipes to generate them for use in large-scale 
Monte Carlo simulations are found. 
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1. I N T R O D U C T I O N  

Randomness is a notion that often occurs in physics. Random systems 
appear as limiting cases at infinite temperature, or also as quenched states 
at low temperatures. In ergodic theory and in the description of irreversible 
phenomena randomness plays a central role, be it in the Ehrenfests' urn 
model or in the dynamic theory of chaotic systems. Perhaps the simplest 
and most specific example is found in the field of Monte Carlo simulations, 
where random numbers are used to implement transition probabilities. 
Much effort has been spent to find the deterministic methods for their 
generation that are essential for efficiency and general control; see the 
review given by Knuth ~1) and many recent papers. (2-6) 

In mathematics, randomness is an important notion in the foundation 
of probability theory, and in algorithmic theory it is related to basic 
notions like complexity and incomputability. Many mathematicians and 
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even philosophers, such as yon Mises, Kolmogoro-d, Popper, Martin-L6f, 
and Chaitin, have discussed the subject. A survey of the mathematical 
debate was given by van LambalgenJ 7/ 

In spite of all this attention, a general and operational notion of 
randomness has not emerged, not even for the simple case of a random 
binary sequence. This is unsatisfactory, also for practical reasons. At 
present, several methods to generate random numbers exist that are 
suitable for many purposes, but for future large-scale Monte Carlo calcula- 
tions improved methods have to be found, capable of generating random 
bits of high quality at GHz rates. Their development is hampered by the 
confusion still surrounding randomness, which is due to the conflict 
between stochastic and deterministic descriptions and, in mathematics, 
between methods based on existence proofs and constructive methods. 

A straightforward discussion of randomness for the simple case of 
binary sequences may diminish the confusion by providing a concrete 
example. Such a discussion is based here on ensemble theory and on the 
hierarchy of correlation coefficients that was introduced in an earlier 
paper. (8) Reliable recipes for random-number generation at GHz rates will 
serve as a practical objective. The present paper contains the technical part 
of the discussion; a general report, concentrating on the conceptual aspects 
and giving explicit examples, will be published elsewhere. (9) 

2. THE H IERARCHY OF CORRELATION COEFFICIENTS 

Consider a binary sequence {ai} of N bits a~ = O, 1 with i=  1 ..... N. It 
is equivalent to a parity sequence {bi}, where the parities are given by 
bi = ( - 1 )a,. The sequences are identified by the decimal representation 

N 

j =  ~ a , .2  u i (1) 
i = 1  

An ensemble of sequences of N bits is defined by assigning a statistical 
weight pj to sequence j for j = 0,..., 2 N- 1. The weights obey 

2 N -  1 

0~<pj~< 1, ~ p j = l  (2) 
j - - 0  

An increasing series of indices arbitrarily selected from the range l to N is 
indicated by the set 

I(q, s ) =  {i1,..., iq} (3) 

where the number of elements q is the order of the set and s = i q  - i a + 1 >~ q 
is its size. Equation (3) is not meant to imply that q and s together define 
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the set of fixed indices completely. The total number of sets is 2 N, including 
the empty set ~5 =I(0,  0), and there are N!/[q! ( N - q ) ! ]  sets of order q. 
For each set a product of parities bl j) of sequence j is given by 

P(I, j) = ~] b 9 (4) 
i e [  

This product appears as the general term in the following expansion over 
all sets/ ,  including the empty set ~ with P ( ~ ,  j) = 1: 

N 

I ]  (1 {J) + b, ) = ~ P(I, j) : 2N(S j ,  O (5) 
/=1  1 

where Kronecker's symbol is used to express that this quantity always 
vanishes unless b}J)= 1 for all i, which happens only for j =  0. 

A correlation coefficient CI of order q and size s is now defined as the 
expectation value of P(L j)  over the ensemble of sequences, 

2 N -  1 

Cz(q.,) == - ~ P( I , j )p j  
j = O  

(6) 

For the empty set I =  ~ ,  not measuring a true correlation, C~ = 1 holds 
always. All values of C1 lie on the segment ( - 1, 1). When they are summed 
over all sets I, the expectation value of the quantity given in Eq. (5) 
appears. The mean value of the correlation coefficients therefore obeys 

<C,>=--2--N~ CI=Po (7) 
l 

where P0 is the weight of the sequence for which a i=  0 with be= 1 for all 
i. Equation (7) is a weak conservation law for the total amount of correla- 
tion; weak, because the different correlation coefficients have different signs 
and cancel one another rather effectively. 

Equation (6) gives the correlation coefficients in terms of the statistical 
weights, but also a reverse relation holds. One may write 2Nl[  ,] 

(j) (k) pj = 2 N 2 (1 + b i b i 
k=O z 

Pk 

since the product is equal to 2 N 6 j ,  k . Expanding this product and using 
Eqs. (4) and (6), one finds 

2 N- 1 I 
P~ =2-N  2 1~ , - i  j P k  = 2  N 2 p ( I , J )  C, (8) 

k = 0  i ~ I  I 

822/63/5-6-6 
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Equations (6) and (8) describe a transformation between the 2 N weights 
and the 2 N correlation coefficients, without loss of information. A sym- 
metric notation would result when the sets I(q, s) were ordered by means 
of their binary code, with l's only at the positions contained in /. This 
would reveal P(I, j) as the 2 N x 2 N Hadamard-Sylvester matrix it really is. 
Here, it suffices to note that the transformation is norm-conserving: 

<C2> = 2  NZC2 
I 

= 2  u ( l + b i  b, ) PjPe 
" i =  

2 N 1 

j = O  

p2 (9) 

This may be called a strong conservation law, since in the mean square 
correlation coefficient no cancellations occur. 

3. SPECIAL ENSEMBLES 

So far, the ensemble was completely general, but now three special 
cases will be considered. The gambling ensemble is defined by 

pj = 2 ~v for all j (10) 

implying that the bits are independent. The correlation coefficients obey 

C , = 2  N~p(I,j)=O for [va~3 ( l l )  
J 

because the sum over the sequences of parity products can be written as a 
product over I of parity sums per element, which are zero. In the gambling 
ensemble, C e  is the only term that survives in Eqs. (7) and (9). It follows 
from Eq. (8) that if all true correlation coefficients are zero, the weights are 
those of the gambling ensemble. If randomness is the same as uncorrelated- 
hess, it is a property of the gambling ensemble, not of a single sequence. 
The gambling ensemble is future-directed: it corresponds with the expected 
outcomes when a fair coin is going to be tossed N times. It is identical with 
the canonical ensemble for a chain of N Ising spins at infinite temperature. 
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At the other extreme is the singular ensemble, defined by 

p / =  6/,k for all j (12) 

where k is the decimal representation of the only sequence in the ensemble. 
All correlation coefficients are either - 1  or 1, depending on the number of 
negative parities involved in P(I, k); in a fixed sequence, everything is 
correlated and nothing is random. If k r  the negative and positive 
coefficients in Eq. (7) cancel one another completely. The mean square 
value of Eq. (9) is now equal to 1. The singular ensemble refers to a known 
sequence of past events, the actual outcomes of N tosses of a coin, fair or 
not; it corresponds to a quenched Ising chain at zero temperature. 

However, the idea that a single sequence could not be called random 
in any sense is too severe; after a coin has been tossed many times, one 
should be able to decide whether it is reasonably fair or most likely unfair 
by scanning the sequence of outcomes. The wording reflects that a certain 
subjectivity is unavoidable. The decision can be based on the average 
behavior of C+ along the sequence, especially for sets [(q, s) of small order 
and size; the smaller C~ is for these sets, the fairer the coin appears to be. 

A formal base is provided by the scanning ensemble, consisting of a 
sequence k and its N - 1  cyclically translated version k', k",.., that are 
found by iteration of 

k' = 2k rood 2 N + (2k - 2k mod 2N)/2 u 

The nonzero weights for the scanning ensemble are 

1 
p g = ~  for j=k,k' ,k", . . .  (13) 

The translated versions are assumed to be different (if not, the period of the 
sequence is shorter than N and should be used instead). The all-zero 
sequence thus being absent from the scanning ensemble for any interesting 
value of N, the mean correlation coefficient of Eq. (7) vanishes for that 
ensemble. The mean square value of Eq. (9) is l/N, which is rather small, 
but which, as an average over 2 N positive quantities, is far from excluding 
the presence of sets with correlation coefficients close to + 1. 

The more of those coefficients happen to be equal to 0, the closer 
to + 1 the remaining ones must be. This is the predicament that all 
methods for generating random sequences must face up to. Any neglect of 
the difference between the true randomness expected when a fair coin is 
going to be tossed N times and the approximate form of randomness found 
afterward when scanning the actual outcomes is an example of the more 
general confusion around irreversibility. 
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Averaging P(L k) for a fixed set I over the scanning ensemble is the 
same as averaging the parity product over a single sequence while keeping 
only the relative positions in I fixed (apart from boundary effects). The 
correlation coefficients for the scanning ensemble, the scanning coefficients 
for short, are indeed identical with the usual multispin correlation coef- 
ficients for a periodic chain of frozen Ising spins. For instance, the scanning 
coefficients Cz of second order, for I= I (2 ,  s), form together the pair- 
correlation function for two spins or partities at a varying relative 
distance s. 

Still other ensembles could be envisaged, introducing a certain bias 
between positive and negative parities or between like and unlike more or 
less neighboring parities (which is what the Ising model is all about). 
Another generalization, to sequences of numbers modulo m, can be 
obtained by using in the correlation coefficients the complex m th roots of 
unity instead of the parities. Neither generalization is needed here. 

To summarize: if randomness implies the vanishing of all true correla- 
tion coefficients, it is a property of the gambling ensemble. A single 
sequence dealt with by means of the singular ensemble can never be called 
random. Some or even many scanning coefficients can be small, but only 
at the detriment of others. Any definition of randomness that differs from 
uncorrelatedness has to face the question What deviations from zero are 
tolerated for which correlation coefficients. 

4. ENTROPY, DEGREES OF FREEDOM, 
AND PSEUDORANDOMNESS 

The measures (C~) and (C~)  for the total amount of correlation are 
adversely related to the entropy S, which is the usual ensemble measure for 
randomness defined by 

2 N 1 

S - -  ~ pjlnpj (14) 
j - - 0  

The values of S, (C~), and ( C  2) for the different ensembles are given in 
Table I, together with the number n = S/ln 2 of binary degrees of freedom, 
which for simplicity will be assumed to be integer. The maximum value 
S = N In 2 is indeed obtained for the gambling ensemble, which contains no 
information on any sequence. In the singular ensemble the entropy is 0, 
corresponding to complete information about the sequence. The identifica- 
tion of randomness with uncorrelatedness, arbitrariness, disorder, and 
complete lack of information appears to be fully justified and is indeed 
straightforward. 
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Table I. Ensemble Properties ~ 

889 

Ensemble General Gambling Singular Scanning 

Weight pj  2 - N (~j, k 1 / N  

Number of sequences 2 N 2 N 1 N 
(CI) P0 2-N 5o.k 0 
(C~) ZP~ 2 N 1 1/N 

Entropy S - Z  Pj In p; Nln 2 0 In N 
n S/ln 2 N 0 In N/ln 2 

a The values 2 -N in the gambling ensemble for the mean and the mean square correlation 
coefficient are due to the empty set I - ~  only. Note the large difference in entropy and 
degrees of freedom between the gambling and the scanning ensemble. 

In the scanning ensemble, with ent ropy S = l n  N, only the absolute 
positions of  the bits of the sequence are unknown,  their relative positions 
being the same as in the sequence k on which the ensemble is based. In  this 
respect there is no distinction between a rather haphazard  sequence of 
period N and one in which a single bit differs from all the others. However,  
the effective use of the available n = In N/ ln  2 degrees of freedom differs. 
The most  economical  use of these few degrees of freedom results when all 
2" strings of n bits that  are possible occur somewhere in the sequence, 
overlaps being allowed. A sequence for which this holds will be called 
pseudorandom.  

A pseudorandom sequence is ergodic in the sense that  during a period 
N precisely all strings of n bits are visited once. Being periodic, the 
sequence may even be called deterministic, though this does not  imply that  
it obeys a simple law or  can be constructed by a Turing machine program 
of less than N bits. Conversely, the absence of a law does not  guarantee 
pseudorandomness  and leaves the question open as to which scanning coef- 
ficients are nonzero in order  to obey ( C ~ ) = N  -1. For  pseudorandom 
sequences a partial answer can be given: all scanning coefficients for sets 
I(q, s) with q<~s<~n are zero. The little amount  of freedom that the 
scanning ensemble allows is used to accommodate  the gambling ensemble 
for sequences of  n = log2 N bits within a pseudorandom sequence of N bits. 
For  a more  complete answer, sets of size larger than n must  be considered. 

5. W E L L - T E M P E R E D  M A X I M U M - L E N G T H  S E Q U E N C E S  

In a pseudorandom sequence of N bits, all sets of size s smaller than 
n are uncorrelated, but at the same time there must  be a first correlated set, 
I(q, n + 1 ) =  {i, j, k,..., i +  n }, of  size s = n + 1 with a nonvanishing scanning 
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coefficient that depends only on the relative locations j - i ,  k - i  ..... n. 
Otherwise, there would be more degrees of freedom than n and the period 
would be longer than N = 2 n. The size of this set is thus as large as can be, 
but its order may be rather small. Indeed, it is not difficult to find 
pseudorandom sequences that show a lot of structure due to low-order 
correlations of size n + 1. To improve upon pseudorandomness one has 
to require that I(q, n + 1) is not just of large size (implying that n is 
sufficiently large), but also of rather high order. In addition, all other 
correlated sets of size not much larger than n must be of a similar 
high order. The requirements are met by well-tempered pseudorandom 
sequences, invented for the occasion. For these sequences, the nonzero 
scanning coefficients belong either to sets I(q, s) with q >> 1 when s - n  is 
small, or to sets with s >> n when q is small, or to irrelevant sets for which 
both q and s - n  are large. If such sequences exist, they exhaust the main 
possibilities to imitate randomness within a single sequence. 

However, sheer existence is not enough; a practical though perhaps 
not unique method for their construction is also needed. Consider the 
special case of a pseudorandom sequence for which the first-correlated set 
I(q, n + 1) happens to have a scanning coefficient that is not just different 
from zero, but even equal to 1. This looks more awkward than it is, since 
the total amount of correlation is conserved. The completely correlated set 
acts as a simple law which upon iteration produces the whole sequence. 
When a string of n bits is given as a seed located at positions i to i + n - 1, 
the modulo-2 sum of the bit at position i and the following q - 2  bits of 
I(q, n + 1) is equal to the next bit of the sequence (located at i+  n). The 
seed determines the whole sequence. 

This is just a description of a shift-register sequence produced by a 
( q - 1 ) - b i t  feedback rule; see Golomb. ~1~ For  suitable choices of the 
feedback positions, the first q - 1  positions of the set I ( q , n +  1), a 
maximum-length sequence of N = 2  " -  1 bits is produced, which is a 
pseudorandom sequence from which a single 0 is lacking (a string of n 
zeros cannot act as seed, but all other strings occur). The difference 
between a maximum-length and a pseudorandom sequence is negligible. As 
a simple example, the 2-bit feedback rule that corresponds to the first- 
correlated set I(3, 5 ) =  {i, i +  1, i + 4 }  produces the maximum-length 
sequence { 111100010011010 } of period N = 15. Maximum-length sequen- 
ces produced by 2-bit rules, with n up to ~250, have often been used for 
random-number generation, with varying succes; indeed, these sequences 
are not well-tempered, because q = 3 is far too small. Yet, maximum-length 
sequences are attractive random-number generators because of their 
simplicity, which also facilitates a study of the correlation properties. 

What would be acceptable values for q and n? When the pseudo- 
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random sequence is used as a source of random numbers of 32 bits each, 
only n/32 of these numbers will be completely independent. To avoid 
correlations of order 10 or lower as long as possible, the rule of thumb 

1 n 1/2 < q <  5n may be used. To be definite, the rather arbitrary conditions 
n>3000 and q>100  are suggested, which are too severe for most 
purposes, though not for large-scale Monte Carlo simulations where 
random bits at GHz rates are needed. Can one find maximum-length rules 
I(q, n + 1) obeying these conditions? Yes: when the elementsof  m maxi- 
mum-length sequences generated by widely different 2-bit rules are added 
modulo 2, an almost pseudorandom sequence is obtained, with a period 
that is the product of the periods of the constituting sequences (if these are 
relative primes). The order of the first-correlated set of that sequence is 
q = 3 m, apart from chance cancellations. Suitable 2-bit rules for this recipe 
can be taken from a list provided by Zierler (11) for maximum-length 
sequences with Mersenne prime as periods, the largest one having the truly 
maximum length of 2 9689 - -  1 bits. Explicit and, in principle, efficient recipes 
with n > 104 and q > 100 or even much larger result. (9) 

6. THE B R A N C H I N G  PROCESS OF CORRELATED SETS 

The question still remains whether the other correlated sets that are 
generated by a first-correlated set I(q, n + 1) with large q are also of high 
order, at least initially. A simplifying feature is that all sets taken from a 
maximum-length sequence of N bits are either completely correlated or 
uncorrelated, with a scanning coefficient 1 or -1/N, respectively (the 
- 1/N instead of 0 is due to the missing bit). The sets of order q but of any 
size consist of A(q, N) uncorrelated sets and B(q, N) correlated ones. It can 
be shown that 

( N )  N , qeven 
- - •  (15) 

B(q, N ) = ~ + I  + N + I  1) ( ( q - 1 ) / 2 ) '  q odd (q+1~/2 ( N -  1)/2 

holds exactly. (8) The total number of sets is 

A(q,N)+B(q, N ) = ( N )  (16) 

For large N, the term in Eq. (15) depending on q being even or odd is 
negligible. The asymptotic expressions are 

N 1 N A ( q , N ) ~ - - ~ ( N q ) ,  B(q ,N)~-~- -~(q)  (17) 
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in agreement with the conservation laws of Eqs. (7) and (9). The correlated 
sets contribute N times more to the mean square scanning coefficient than 
the uncorrelated sets, although they are outnumbered by a factor N. 

To find expressions depending on s, consider all sets I(q, s ) =  {1,..., s} 
that start at position 1, consisting of F(q, s) uncorrelated sets and G(q, s) 
correlated ones, all of order q and size s. Their sum H(q, s) is equal to the 
number of possibilities to chose the q - 2  elements of the set between the 
positions 1 and s: 

H(q's)=F(q's)+G(q's)=( s-2)q-2 for s>~q>~2 (18) 

with H(0, 0) = H(1, 1) = 1 as separate values. For q > s one has G(q, s) = 0, 
and because of pseudorandomness one has G(q, s) = 0 for s ~< n. A general 
property of maximum-length sequences is that the pair correlation and the 

Table II. The Number G(q, s) of Correlated Sets I(q,s) for the 
Maximum-Length Sequence Generated by the First-Correlated Set 

1(3, 5 ) = { i ,  i + 4 } ,  Indicated by the Box a 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

2 2 

1 2 1 1 

1 1 3 6 

1 3 3 7 11 

4 9 10 15 16 

1 4 9 19 31 31 

1 5 12 28 54 62 

1 6 16 40 87 116 

7 2 

19 9 

44 28 17 5 

96 72 55 22 

1 

l 

2 

4 

8 

16 

32 

64 

128 

256 

512 

1 5 18 45 80 107 107 80 45 18 5 1 

To the right the sums over q are given, The asterisk is where the triangle of Pascal of 
Eq. (18) for the total number  H(q, s) of sets l(q, s) starts. The lowest line is the approxima- 
tion to G(q, 15) of Eq. (23). 
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average parity vanish: G(q, s) = 0 for q ~< 2, except G(0, 0) = 1 for the empty 
set. As an example, Table II gives all nonzero elements of G(q, s) found by 
numerical examination for the trivial case of the maximum-length sequence 
with N =  15 that was given explicitly above. 

At s = n +  1 the first real contribution appears, due to the first- 
correlated set I(q, n + 1)=  {1, j,..., n + 1 }. In the example of Table II, the 
corresponding value G(q, n + 1) is indicated by the box. At s = n + 2 a new 
correlated set 

I ( q ' , n + 2 ) = I ( q , n + l ) @ T I ( q , n + l ) = ( l @ T ) I ( q , n + l )  (19) 

appears, where T indicates an elementary translation of I(q, n + 1) to the 
set {2, j + l , . . . , n + 2 } ,  and where | is an EXOR operation: elements 
common to I(q, n + 1) and TI(q, n + 1) cancel one another in the parity 
product and do not appear in I(q', n + 2). The new correlated set gives 
G(q', n + 2) = 1. At s = n + 3, two new correlated sets appear, 

I(q', n+ 3 ) =  (1 | T 2)I(q, n + 1) 
(20) 

I(q", n + 3 ) =  (1 �9 T O  T2)I(q, n+ 1) 

At the next step, the contributing operations are 1 �9 T 3, 1 �9 T O  T 3, 
1 �9 T 2 0  T 3, and 1 �9 T O  T 2 0  T 3, and so on. At step i, new correlated 
sets of size n + i +  1 are found by exor-ing the set T i I ( q , n + l ) =  

i + 1, i + j,..., i + n + 1 } with each of the new correlated sets of the earlier 
steps. In this branching process, all correlated sets starting at position 1 
will be generated. At every step after the first one the number of new 
correlated sets doubles: 

1 for s = n + l  

G(q, s ) =  2 , -2  (21) 
q=3 2s-n 2_  for s>~n+2 

N + I  

The new correlated sets counted by G(q, s) are called so, because they 
are of greater size than the ones obtained at earlier steps. A translated set, 
not starting at position 1, does not contribute to G(q, s), but it does 
contribute to B(q, N). Since a set of size s can be translated N -  s -  1 times 
(to avoid boundary effects, all sets are taken from a single period), the 
contribution of all correlated sets of size s is ( N - s -  1) G(q, s). That is, 
the relation 

N 

Y" ( N -  s + 1) G(q, s) = B(q, N) (22) 
s = n + l  

must hold. A similar relation connects F(q, s) and A(q, N). 
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Equations (16)-(18) suggest the following asymptotic expressions: 

1 ( ; ~ 2 2 )  G(q, s) ~ (23) 

for N > s >~ q >> 2. It is indeed quite natural to expect an asymptotic propor- 
tionality between these quantities. Equation (23) agrees with the sum rules 
over q and over s in Eqs. (21) and (22). Even the agreement between the 
two bottom lines of Table II is already rather satisfactory; a similar 
agreement was found for a maximum-length sequence with n -- 5 degrees of 
freedom, of period N =  31, where the numerical determination of G(q, s) 
starts to be time-consuming. For  larger values of n, further evidence for this 
asymptotic behavior has been obtained ~8) for restricted values of q and 
s -  n. The stochastic region of the branching process can be understood in 
terms of the probability with which cancellations occur in the EXOR 
operations of the process, and consists of normal distributions G(q, s) with 
a width that behaves as s-1/2 

The deterministic region bordering the stochastic one for small values 
of q or of s - n  is both more tricky and more important; there, the correla- 
tions are found that are most detrimental for a good imitation of random- 
ness. For  instance, it can be shown f8) that G(q, s) has an adverse efect on 
the qth moment of the distribution for the number of bits equal to 1 in 
subsequences of length s. To study the detailed behavior of G(q, s) in the 
deterministic region, however, nonpolynomial time algorithms are required 
because of Eq. (18). For  s>n > 1000, say, an awkward situation seems to 
result, but when n is large a strategic choice for the position of the first- 
correlated set, which dominates the whole process, is possible. In the case 
of Table II there is not much choice for the position of the box, but when 
n is large it can be moved to much higher q values by adopting a suitable 
first-correlated set of high order. From that initial condition, the branching 
process starts. If the structure of the first-correlated set is sufficiently 
irregular, chance cancellations that give rise to correlated sets of low order 
are very unlikely (by far the most correlated sets occur around q ~ �89 and 
will appear only when their size is very large compared with n. The high 
order of the remaining local structures implies also that the behavior of 
subsequences, essential when periods of the order of 21oooo are involved, 
will be uniform. A large number of irregular feedback positions means a 
strong tendency back to normality, or an efficient return to the equilibrium 
of the stochastic region. 
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7. D I S C U S S I O N  A N D  C O N C L U S I O N S  

The condition of irregularity in the production rule is needed to 
prevent collective cancellations and is obeyed when the 2-bit rules that 
enter the recipe described above are chosen from Zierler's list, (11) but many 
other 2-bit rules will also lend themselves for suitable combinations. A 
peculiar parallel can be drawn between this condition and the notion of 
complexity of a sequence, defined (by Kolmogorov, Martin-L6f, and 
Chaitin) as the length of the shortest Turing-machine program that 
produces the sequence. In that approach, a sequence is called random when 
its complexity is not smaller than its own length. The condition that the 
production rule involves many feedback bits at irregular positions is in fact 
a requirement that the complexity of the sequence is not too small. The 
similarity is obvious, but so are the differences. 

What about other methods to generate random numbers, like the 
linear-congruence method or the lagged-Fibonacci method? Much 
experience with these methods has been obtained and several reliable 
recipes do exist that are suitable for a multitude of purposes. They have 
been subjected to severe tests, but a discussion in terms of a hierarchy of 
correlation coefficients seems to be difficult because the simplifying 
property of complete correlation characteristic for maximum-length 
sequences does not exist. For other pseudorandom sequences, instead of 
the quantity H(q,s) of Eq. (18) from which the number G(q,s) of 
completely correlated sets can be separated, one should consider the 
quantity 

H'(q, s)= ~, C,2~q,,) (24) 
/(q,s) 

where the summation is over all sets of order q and size s. This distribution 
should not have unacceptable peaks in the deterministic region, but an 
inspection of H'(q, s) is even more difficult than one of G(q, s), and an 
escape by means of a suitable choice for the first-correlated set is 
impossible. The usual methods to test random-number generators are 
difficult to use when high bit rates and very long sequences are desired. 
Moreover, they depend only indirectly on the hierarchy of correlation coef- 
ficients, and it seems to me that they do not sufficiently take into account 
that an increase of randomness in one respect leads to a decrease in 
another. The improved bit-scrambling achieved in recent developments 
such as lagged-Fibonacci sequences with multiple lags and very long 
periods (3) will, however, probably lead to properties similar to those of a 
well-tempered pseudorandom sequence. 
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To conclude: the meaning of randomness can be clarified by the use of 
ensembles, especially the scanning ensemble, in combination with 
the hierarchy of correlation coefficients. Well-tempered pseudorandom 
sequences exhaust the main possibilities to imitate randomness in a single 
sequence, and well-tempered maximum-length sequences are reliable and 
efficient random-number generators. Pseudorandom binary sequences are a 
simple example of a deterministic process that causes chaos, and they 
deserve the attention of theoretical physicists. 
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